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1 Forms of The Axiom of Choice

1.1 The axiom of choice

We will need the axiom of choice later, so we will begin the course by introducing it now.

Definition 1.1. Let A be a nonempty set, and let Xα be a set for each α ∈ A. The
Cartesian product

∏
α∈AXα = {〈xα〉α∈A : aα ∈ Xα∀α ∈ A} is a function A→

⋃
α∈AXα

such that α 7→ xα..

Definition 1.2. The Axiom of choice says that if Xα 6= ∅ then
∏
α∈AXα 6= ∅.

Theorem 1.1 (Cohen). The axiom of choice is not implied by the other standard axioms
of set theory.

This is difficult to apply, but we will use provably equivalent statements.

1.2 Posets and Zorn’s lemma

Let X be a set.

Definition 1.3. A partial order on X is a relation “≤” on X that is

1. Transitive: if a ≤ y and y ≤ z, then x ≤ z

2. Reflexive x ≤ x for all x ∈ X

3. Anti-symmetric: if x ≤ y and y ≤ x, then x = y

Definition 1.4. A total order is a partial order where for all x, y ∈ X, either x ≤ y or
y ≤ x.

Example 1.1. Let S be a set and let P(S) be the set of subsets of S¿ Then ⊆ is a partial
order on P(S).
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Example 1.2. On R, ≤ is a partial order (and in fact a total order).

Example 1.3. Let U ⊆ R2 be a domain. Say (x1, y1) ≤ (x2, x2) if y2 ≥ y1 and |y2− y1| ≤
|x2 − x1|. This is a partial order but not a total order.

Definition 1.5. Let (X,≤) be a poset with U ⊆ X. An element x ∈ U is maximal if
when y ∈ U and y ≥ x, we must have y = x. An element x ∈ X is an upper bound for
U if x ≥ u for all u ∈ U .

The definitions of minimal elements and lower bounds are analogous.

Definition 1.6. A chain in a partially ordered set (X,≤) is a subset Y ⊆ X such that
for all y, z ∈ Y , either y ≤ z or z ≤ y.

Theorem 1.2 (Hausdorff Maximal Principal). Any nonempty poset (X,≤) has a maximal
chain Y ⊆ X.

Lemma 1.1 (Zorn). Let (X,≤) be a nonempty poset. If every chain in X has an upper
bound,, then X has a maimal element.

1.3 Proof sketch of Zorn’s lemma and the Hausdorff maximality principle

Here is another incarnation of the axiom of choice.

Theorem 1.3. Let S 6= ∅, and let F ⊆P(S) with F 6= ∅. Assume F is

1. down-closed: If A ⊆ B ∈ F , then A ∈ F

2. chain-closed: If C is a chain with C ⊆ F , then
⋃
C ∈ F .

Then F contains a maximal element.

Here is a sketch of the proof.

Proof. First, ∅ ∈ F , so F 6= ∅. Assume the result is false. THen for all A ∈ F , there
exists a nonempty B ∈ S \A such that A∪B ∈ F . By property 1, we may assume |B| = 1.
By the axiom of choice, there exists f : F → S such that f(A) ∈ S \A and A∪{f(A)} ∈ F .

At this point, the idea is to start at the empty set and keep constructing chains, then
taking the union of the chain, and then continuing. This requires a notion of the well-
ordering principle, so we will choose a different explanation for our sketch.

Call a subfamily T ⊆ F a tower if

1. ∅ ∈ T

2. A ∈ T =⇒ A ∪ {f(A)} ∈ T

3. T is chain-closed.
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Towers exist (e.g. F). Any intersections of towers is a tower. So there exists a minimal
tower Tmin.

Call A ∈ Tmin a bottleneck1 if ∀B ∈ Tmin, either A ⊆ B or B ⊆ A. The idea is that
the set of bottlenecks is a tower. So Tmin is a chain. By property 3,

⋃
Tmin ∈ Tmin. So by

property 2,
⋃
T ∪ {f(

⋃
Tmin)} ∈ Tmin. This is impossible.

Here is how we prove the Hausdorff maximal principle:

Proof. Let (X,≤) be nonempty. Let F be the set of chains in X. This satisfies the
conditions of the theorem, which implies that there exists a maximal chain.

We can prove Zorn’s lemma from this, as well.

Proof. Take an upper bound for a maximal chain Such an element is maximal.

1This is not standard notation.
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